Amino acid sequence and carbohydrate-binding analysis of the N-acetyl-D-galactosamine-specific C-type lectin, CEL-I, from the Holothuroidea, Cucumaria echinata.

نویسندگان

  • Tomomitsu Hatakeyama
  • Noriaki Matsuo
  • Kouhei Shiba
  • Shoichi Nishinohara
  • Nobuyuki Yamasaki
  • Hajime Sugawara
  • Haruhiko Aoyagi
چکیده

CEL-I is one of the Ca2+-dependent lectins that has been isolated from the sea cucumber, Cucumaria echinata. This protein is composed of two identical subunits held by a single disulfide bond. The complete amino acid sequence of CEL-I was determined by sequencing the peptides produced by proteolytic fragmentation of S-pyridylethylated CEL-I. A subunit of CEL-I is composed of 140 amino acid residues. Two intrachain (Cys3-Cys14 and Cys31-Cys135) and one interchain (Cys36) disulfide bonds were also identified from an analysis of the cystine-containing peptides obtained from the intact protein. The similarity between the sequence of CEL-I and that of other C-type lectins was low, while the C-terminal region, including the putative Ca2+ and carbohydrate-binding sites, was relatively well conserved. When the carbohydrate-binding activity was examined by a solid-phase microplate assay, CEL-I showed much higher affinity for N-acetyl-D-galactosamine than for other galactose-related carbohydrates. The association constant of CEL-I for p-nitrophenyl N-acetyl-beta-D-galactosaminide (NP-GalNAc) was determined to be 2.3 x 10(4) M(-1), and the maximum number of bound NP-GalNAc was estimated to be 1.6 by an equilibrium dialysis experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mannose-recognition mutant of the galactose/N-acetylgalactosamine-specific C-type lectin CEL-I engineered by site-directed mutagenesis.

BACKGROUND CEL-I is a galactose/N-acetylgalactosamine-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. Its carbohydrate-binding site contains a QPD (Gln-Pro-Asp) motif, which is generally recognized as the galactose specificity-determining motif in the C-type lectins. In our previous study, replacement of the QPD motif by an EPN (Glu-Pro-Asn) motif led to a weak binding...

متن کامل

CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, induces nitric oxide production in RAW264.7 mouse macrophage cell line.

We found that CEL-I, a GalNAc-specific C-type lectin isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), induces inducible nitric oxide synthase (iNOS) expression and NO production in RAW264.7 cells. The NO production was inhibited by an iNOS inhibitor, L-NAME, but was not by a lipopolysaccharide (LPS) inhibitor, polymyxin B. In the presence of 0.1-M GalNAc, increased NO p...

متن کامل

Galactose recognition by a tetrameric C-type lectin, CEL-IV, containing the EPN carbohydrate recognition motif.

CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which i...

متن کامل

Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism.

CEL-III is a Ca(2+)-dependent and galactose-specific lectin purified from the sea cucumber, Cucumaria echinata, which exhibits hemolytic and hemagglutinating activities. Six molecules of CEL-III are assumed to oligomerize to form an ion-permeable pore in the cell membrane. We have determined the crystal structure of CELIII by using single isomorphous replacement aided by anomalous scattering in...

متن کامل

Chemical modification of the hemolytic lectin CEL-III by succinic anhydride: involvement of amino groups in the oligomerization process.

CEL-III is a Ca(2+)-dependent lectin from a marine invertebrate, Cucumaria echinata, which shows strong hemolytic activity toward human and rabbit erythrocytes. After binding to carbohydrate receptors, CEL-III oligomerizes in the erythrocyte membrane to form ion-permeable pores, leading to the colloid osmotic rupture of the cells. Since hemolysis was greatly increased in the alkaline pH, especi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 66 1  شماره 

صفحات  -

تاریخ انتشار 2002